text.skipToContent text.skipToNavigation

Technology of Fiber-Optic Sensors

Fiber-​optic sen­sors de­tect ob­jects and condi­tions by di­rec­ting light to a test ob­ject and eva­lua­ting the in­ten­si­ty change of the re­tur­ning light. They can de­tect very small ob­jects, are par­ti­cu­lar­ly flexible to mount and are ex­tre­me­ly re­sis­tant in harsh en­vi­ron­ments – even in high tem­pe­ra­tures, hu­mi­di­ty or wet media. 

Was sind fa­se­rop­tische Sen­so­ren?

Fa­se­rop­tische Sen­so­ren nut­zen die phy­si­ka­li­schen Ei­gen­schaf­ten von Licht bei der Übertragung über Licht­lei­ter aus Glas­fa­ser oder Kunsts­toff, um Ob­jekte zu de­tek­tie­ren. Sie bes­te­hen aus einem Lichtleiter-​Verstärker sowie Licht­lei­tern mit oder ohne Optik. Der Lichtleiter-​Verstärker bein­hal­tet die Licht­quelle und das Emp­fang­se­le­ment sowie die Ve­rar­bei­tungs­ein­heit des Sen­sors. Die Licht­lei­ter sind ausschließlich dazu da, um Licht zu sen­den und zu emp­fan­gen. Da Licht­wel­len­lei­ter keine elek­tro­ni­schen Kom­po­nen­ten en­thal­ten, ei­gnen sich fa­se­rop­tische Sen­so­ren ins­be­son­dere für An­wen­dun­gen in beeng­ten Räumen, in ans­pruchs­vol­len Um­ge­bun­gen oder dort, wo an­dere Sen­so­ren nicht ein­ge­setzt wer­den können.

   

Wie funk­tio­nie­ren fa­se­rop­tische Sen­so­ren?

Fiber-​optic sen­sors mea­sure dif­ferent light sizes such as wa­ve­length and in­ten­si­ty in order to de­rive other mea­su­red va­lues from them. In in­dus­trial au­to­ma­tion, the ener­ge­tic prin­ciple is often used. The emit­ter, usual­ly an LED light source, couples light into a fiber-​optic cable. The light exits at the end of the fiber-​optic cable and ei­ther hits an ob­ject which re­flects it back (sen­sing/re­flec­tion prin­ciple) or it is de­tec­ted di­rect­ly by a re­cei­ver (through-​beam prin­ciple). The re­tur­ned light is then di­rec­ted to the ana­ly­sis mo­dule, where a pho­to­diode mea­sures the amount of light re­cei­ved. The elec­tro­nics constant­ly com­pare this amount of light with a de­fi­ned thre­shold value and switch the out­put of the sen­sor ac­cor­din­gly.

What Are the Ad­van­tages of Fiber-​Optic Sen­sors?

Flexible Ins­tal­la­tion

Fiber-​optic sen­sors are ex­tre­me­ly com­pact and ideal for ins­tal­la­tion in confi­ned in­dus­trial en­vi­ron­ments. In ad­di­tion, the high flexi­bi­li­ty and low at­te­nua­tion of the fiber-​optic cables also make lar­ger trans­mis­sion dis­tances pos­sible.

High Re­lia­bi­li­ty

Fiber-​optic sen­sors are ex­tre­me­ly du­rable and en­sure re­liable per­for­mance even under harsh am­bient condi­tions such as high tem­pe­ra­tures, hu­mi­di­ty and ag­gres­sive media such as co­oling lu­bri­cants or clea­ning agents. 

Elec­tro­ma­gne­tic Com­pa­ti­bi­li­ty

In fiber-​optic cables, si­gnal trans­mis­sion is pu­re­ly op­ti­cal, which eli­mi­nates the chal­lenges as­so­cia­ted with EMC for fiber-​optic sen­sors. They are also ex­tre­me­ly in­sen­si­tive to elec­tro­ma­gne­tic in­ter­fe­rence.

Fiber-Optics vs. Small Photoelectrics: Technology Overview

What Are Fiber-​Optic Am­pli­fiers?

Fiber-​optic am­pli­fiers, also known as op­ti­cal am­pli­fiers, are com­po­nents that am­pli­fy si­gnals in op­ti­cal com­mu­ni­ca­tion sys­tems and play a key role in fiber-​optic com­mu­ni­ca­tion. Here, they in­crease the trans­mis­sion range.

In the context of in­dus­trial au­to­ma­tion, fiber-​optic am­pli­fiers are sen­sors that use fiber-​optics such as glass fi­bers or plas­tic fiber-​optics to mea­sure va­rious phy­si­cal va­riables such as pres­sure, tem­pe­ra­ture, ex­pan­sion and the pre­sence or po­si­tion of ob­jects. They uti­lize the abi­li­ty of fiber-​optics to trans­mit light, de­tec­ting changes in the spec­trum or amount of light.


What Does Multi Unit Mean?

A sen­sor net­work, also known as a multi unit, consists of se­ve­ral sen­sors that can com­mu­ni­cate di­rect­ly with each other. The sen­sors do not in­ter­fere with each other, even if they are close to each other or op­po­site each other and ins­pec­ting the same ob­ject. This en­ables ef­fi­cient co­or­di­na­tion and col­la­bo­ra­tion bet­ween the sen­sors. In ad­di­tion, the sen­sor net­work mi­ni­mizes the need for ca­bling, as only one cable is re­qui­red for the connec­tion to the IO-​Link mas­ter. The si­gnal le­vels and swit­ching chan­nels of all connec­ted sen­sors are trans­mit­ted via the IO-​Link pro­cess data, a connec­tion cable and a port on the IO-​Link mas­ter. This op­ti­mizes data trans­fer and si­gni­fi­cant­ly re­duces ca­bling and ins­tal­la­tion ef­fort.

What Is the Ali­gn­ment Mode?

Fiber-​optic cables must be ali­gned pre­ci­se­ly to the tar­get for re­liable ob­ject de­tec­tion. Es­pe­cial­ly when using the through-​beam prin­ciple, the emit­ter and re­cei­ver should be po­si­tio­ned axial­ly as clo­se­ly as pos­sible to each other. Since the am­pli­fier or ana­ly­sis mo­dule is often ins­tal­led in the control ca­bi­net or out­side the field of vi­sion, the setup is often based on the ope­ra­tor’s view and as­sess­ment. The ali­gn­ment mode vi­sua­lizes the si­gnal strength by pul­sing the trans­mit­ting light. Si­mi­lar to par­king sen­sors in the car, the pulse fre­quen­cy in­creases the stron­ger the si­gnal re­cei­ved. The sen­sor head is ad­jus­ted in its angle and axis until the op­ti­mal ali­gn­ment with the maxi­mum si­gnal is achie­ved. This en­ables ef­fi­cient and pre­cise setup even with grea­ter dis­tances bet­ween the emit­ter and re­cei­ver.

What do you need a DIN rail adap­ter for?

The am­pli­fier unit is usual­ly moun­ted on stan­dar­di­zed DIN rails. Ins­tal­la­tion is tool-​free by sim­ply and qui­ck­ly snap­ping the am­pli­fiers onto the rail. When using the multi-​unit mode, se­ve­ral fiber-​optic am­pli­fiers can be ar­ran­ged next to each other in the control ca­bi­net in a space-​saving and non-​slip man­ner.

What Are the Ad­van­tages of Dif­ferent Light Sources?

De­pen­ding on the spe­ci­fic re­qui­re­ments of the ap­pli­ca­tion, wen­glor fiber-​optic sen­sors use red, blue, pink or in­fra­red light.

  • Red LEDs (633 nm) offer high pro­cess sta­bi­li­ty, even with very bright or white test ob­jects.

  • Blue LEDs (455 nm) are par­ti­cu­lar­ly sui­table for pre­cise mea­su­re­ments on glo­wing, glos­sy or dark sur­faces, as they pe­ne­trate less dee­ply into the test ob­ject.

  • In pink light mode, red and blue LEDs are ac­ti­va­ted si­mul­ta­neous­ly to in­crease light out­put and im­prove the range of the sen­sors.

  • In­fra­red light (over 750 nm) is in­vi­sible to the human eye, pre­ven­ting vi­sual dis­trac­tions and ma­ni­pu­la­tion – ideal for mo­ving sen­sors on robot grip­pers or au­to­no­mous ve­hicles. It also en­ables a grea­ter range due to its hi­gher power.

What Are Fiber-​Optic Cables?

Fiber-​optic cables are optic fi­bers consis­ting of a light-​conducting core and a ja­cket, each ha­ving a dif­ferent re­frac­tive index. In this pro­cess, the light is trans­por­ted through the core with vir­tual­ly no losses due to total re­flec­tion on the ja­cket. When exi­ting the fiber-​optic cable, the light is scat­te­red at an aper­ture angle of ap­proxi­ma­te­ly 60 de­grees.
 

What Is the Re­frac­tive Index?

The re­frac­tive index des­cribes how much light rays change di­rec­tion when they enter from one me­dium to ano­ther. It is de­fi­ned by the ratio of the light ve­lo­ci­ty in the va­cuum c to the light ve­lo­ci­ty in the consi­de­red me­dium v. The re­frac­tive index n is di­men­sion­less and va­ries de­pen­ding on fac­tors such as the tem­pe­ra­ture and wa­ve­length of the light.

The fol­lo­wing phy­si­cal for­mu­la is used to de­ter­mine the re­frac­tive index:
 
n = v/c

What Is an Aper­ture Angle?

The aper­ture angle re­fers to the angle at which light exits the op­ti­cal fiber. A large aper­ture angle of­fers the ad­van­tage that it en­ables re­liable de­tec­tion of even he­te­ro­ge­neous ob­jects at a short dis­tance. It is also easy to handle, as the orien­ta­tion of the de­vice is not im­por­tant. Ho­we­ver, the light out­put qui­ck­ly spreads over a large area, re­du­cing the range as the light does not stay fo­cu­sed.

To control this wide aper­ture angle, lenses are used that focus or col­li­mate the light as re­qui­red. This en­ables the de­tec­tion of very small ob­jects or si­gni­fi­cant­ly in­creases the range of the fiber-​optic cables.

Op­ti­cal Fi­bers in Com­pa­ri­son

Plas­tic fiber-​optic cables are ideal for ob­ject de­tec­tion in ap­pli­ca­tions re­qui­ring lit­tle space. Glass fiber-​optic cables, on the other hand, prove them­selves in de­man­ding am­bient condi­tions with high tem­pe­ra­tures and offer che­mi­cal re­sis­tance. These and other ad­van­tages of these ma­te­rials open up nu­me­rous ap­pli­ca­tion pos­si­bi­li­ties to meet a wide range of re­qui­re­ments.

Glass Fiber-​Optic Cables

Trans­mis­sion of vi­sible light and in­fra­red light
To­le­rant to ex­treme tem­pe­ra­ture ranges
Sui­table for cor­ro­sive or wet in­dus­trial en­vi­ron­ments
Par­ti­cu­lar­ly low at­te­nua­tion in the area of the in­fra­red light
Risk of brea­kage due to ex­ces­sive or re­pea­ted ben­ding

Plas­tic Fiber-​Optic Cables

Trans­mis­sion of vi­sible light
Less to­le­rant to ex­treme tem­pe­ra­ture ranges
Not sui­table for cor­ro­sive or wet in­dus­trial en­vi­ron­ments
Par­ti­cu­lar­ly low at­te­nua­tion in the vi­sible light area
Re­peat bends pos­sible due to high flexi­bi­li­ty

Pa­ral­lel Fi­bers

With this type of re­flec­tion, the fi­bers run pa­ral­lel to each other to trans­mit light si­gnals. This fiber ar­ran­ge­ment is avai­lable as both plas­tic and glass fiber-​optics and is used in most stan­dard ap­pli­ca­tions.


 

Co­axial Fi­bers

The co­axial re­flec­tion type is a high-​precision mea­su­re­ment me­thod consis­ting of a core (emit­ter) and a sur­roun­ding area (re­cei­ver). With this type, the di­rec­tion of entry of the test ob­ject into the mea­su­ring range is ir­re­le­vant for the po­si­tion of the fiber-​optic sen­sor.

 

Mixed Fi­bers

The mixed re­flec­tion type re­fers to a fiber-​optic struc­ture in which many trans­mit­ting and re­cei­ving fi­bers are ar­ran­ged wi­thout se­pa­ra­tion. The po­si­tion and dis­tance of the fiber-​optic cable to the ob­ject are less re­le­vant here. The image area is very small or not present.

Ef­fect of Fiber Dia­me­ter/Bundle Dia­me­ter

The lar­ger the dia­me­ter of the light-​conducting core, the more light can be trans­por­ted through the cable. This leads to grea­ter ranges and im­pro­ved de­tec­tion of deep black ob­jects. For cer­tain fiber-​optic heads, such as fiber-​optic cable bands, more fi­bers and conse­quent­ly a lar­ger dia­me­ter are the­re­fore re­qui­red.

What Does the Ben­ding Ra­dius Say?

The ben­ding ra­dius de­ter­mines how much a cable can be bent wi­thout da­ma­ging it or af­fec­ting the si­gnal qua­li­ty. If a fiber-​optic cable is bent ex­ces­si­ve­ly, there is a risk that the fiber ja­cket in the cable breaks and light es­capes from the fiber core. This can lead not only to in­crea­sed dam­ping, but also to mi­cro­cracks in the fiber core, re­sul­ting in per­ma­nent da­mage. The­re­fore, it is im­por­tant to ob­serve the ben­ding ra­dius, es­pe­cial­ly for glass fiber-​optic cables.

What Is the Struc­ture of Fiber-​Optic Cables?

Plastic Fiber-Optic Cables

AAA0RGp1bWIAAAAeanVtZGMycGEAEQAQgAAAqgA4m3EDYzJwYQAAADQeanVtYgAAAEdqdW1kYzJtYQARABCAAACqADibcQN1cm46dXVpZDpmMzI5YjI2My1hZWI4LTQwNmItODJlYi1mN2VhYWI1YWU2ZGMAAAABtGp1bWIAAAApanVtZGMyYXMAEQAQgAAAqgA4m3EDYzJwYS5hc3NlcnRpb25zAAAAANdqdW1iAAAAJmp1bWRjYm9yABEAEIAAAKoAOJtxA2MycGEuYWN0aW9ucwAAAACpY2JvcqFnYWN0aW9uc4GjZmFjdGlvbmtjMnBhLmVkaXRlZG1zb2Z0d2FyZUFnZW50bUFkb2JlIEZpcmVmbHlxZGlnaXRhbFNvdXJjZVR5cGV4U2h0dHA6Ly9jdi5pcHRjLm9yZy9uZXdzY29kZXMvZGlnaXRhbHNvdXJjZXR5cGUvY29tcG9zaXRlV2l0aFRyYWluZWRBbGdvcml0aG1pY01lZGlhAAAArGp1bWIAAAAoanVtZGNib3IAEQAQgAAAqgA4m3EDYzJwYS5oYXNoLmRhdGEAAAAAfGNib3KlamV4Y2x1c2lvbnOBomVzdGFydBjRZmxlbmd0aBlFsGRuYW1lbmp1bWJmIG1hbmlmZXN0Y2FsZ2ZzaGEyNTZkaGFzaFggQb0fKb8PdRscIXeRuG97jb+0dGbdCWA5l6tKbwOCrVdjcGFkSQAAAAAAAAAAAAAAAgtqdW1iAAAAJGp1bWRjMmNsABEAEIAAAKoAOJtxA2MycGEuY2xhaW0AAAAB32Nib3KoaGRjOnRpdGxlb0dlbmVyYXRlZCBJbWFnZWlkYzpmb3JtYXRtaW1hZ2Uvc3ZnK3htbGppbnN0YW5jZUlEeCx4bXA6aWlkOjc2YjM3YzBjLTM0YjItNDRiOS04ODcwLTA3NWM5MmFjZDAyNG9jbGFpbV9nZW5lcmF0b3J4NkFkb2JlX0lsbHVzdHJhdG9yLzI5LjAgYWRvYmVfYzJwYS8wLjcuNiBjMnBhLXJzLzAuMjUuMnRjbGFpbV9nZW5lcmF0b3JfaW5mb4G/ZG5hbWVxQWRvYmUgSWxsdXN0cmF0b3JndmVyc2lvbmQyOS4w/2lzaWduYXR1cmV4GXNlbGYjanVtYmY9YzJwYS5zaWduYXR1cmVqYXNzZXJ0aW9uc4KiY3VybHgnc2VsZiNqdW1iZj1jMnBhLmFzc2VydGlvbnMvYzJwYS5hY3Rpb25zZGhhc2hYIEppwb3/qN5BMHi+JO3M+DE6wdFklTRWcaANawazN9SvomN1cmx4KXNlbGYjanVtYmY9YzJwYS5hc3NlcnRpb25zL2MycGEuaGFzaC5kYXRhZGhhc2hYIEsmbR/09dKcKgFN81XO0Yktp0MlexceHjnTrlARZQy3Y2FsZ2ZzaGEyNTYAADAQanVtYgAAAChqdW1kYzJjcwARABCAAACqADibcQNjMnBhLnNpZ25hdHVyZQAAAC/gY2JvctKEWQzvogE4JBghglkGPTCCBjkwggQhoAMCAQICEBWN/yesI9K4JUtOYzceHZ4wDQYJKoZIhvcNAQELBQAwdTELMAkGA1UEBhMCVVMxIzAhBgNVBAoTGkFkb2JlIFN5c3RlbXMgSW5jb3Jwb3JhdGVkMR0wGwYDVQQLExRBZG9iZSBUcnVzdCBTZXJ2aWNlczEiMCAGA1UEAxMZQWRvYmUgUHJvZHVjdCBTZXJ2aWNlcyBHMzAeFw0yNDEwMTUwMDAwMDBaFw0yNTEwMTUyMzU5NTlaMIGrMRMwEQYDVQQDDApBZG9iZSBDMlBBMSgwJgYDVQQLDB9Db250ZW50IEF1dGhlbnRpY2l0eSBJbml0aWF0aXZlMRMwEQYDVQQKDApBZG9iZSBJbmMuMREwDwYDVQQHDAhTYW4gSm9zZTETMBEGA1UECAwKQ2FsaWZvcm5pYTELMAkGA1UEBhMCVVMxIDAeBgkqhkiG9w0BCQEWEWNhaS1vcHNAYWRvYmUuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwxDBgdB9PXLpMXPw5oNgYkFWDPP1aSfth9TZPINOtOQlhp1v4h+hMxZWFjkZ3RJRuoSBrsSSYBaEfiDMKisi/sOxuFHKBV//l1rv3SrjrixANXIlqjGdIYydaMaFa/5ovFz/m4+SUz0ccYzqw+vSAzuRySGnpgm8Gmj+SEJcL/GIHzqU9bUy3NsizY2oY28yj32rbkOqeADSM51OqIJKloEBFFexzMunzpU+K2sLqheoR8FJMaR0fGXa/gqRzhkiBFhwUhLPS9s6+TCnz09UZMlXbdG/iFKj3UPFUDjqh0wtFgcz24DrUlaWeiltKHouymBHuirzvmOG0VtSPepxOQIDAQABo4IBjDCCAYgwDAYDVR0TAQH/BAIwADAOBgNVHQ8BAf8EBAMCB4AwHgYDVR0lBBcwFQYJKoZIhvcvAQEMBggrBgEFBQcDBDCBjgYDVR0gBIGGMIGDMIGABgkqhkiG9y8BAgMwczBxBggrBgEFBQcCAjBlDGNZb3UgYXJlIG5vdCBwZXJtaXR0ZWQgdG8gdXNlIHRoaXMgTGljZW5zZSBDZXJ0aWZpY2F0ZSBleGNlcHQgYXMgcGVybWl0dGVkIGJ5IHRoZSBsaWNlbnNlIGFncmVlbWVudC4wXQYDVR0fBFYwVDBSoFCgToZMaHR0cDovL3BraS1jcmwuc3ltYXV0aC5jb20vY2FfN2E1YzNhMGM3MzExNzQwNmFkZDE5MzEyYmMxYmMyM2YvTGF0ZXN0Q1JMLmNybDA3BggrBgEFBQcBAQQrMCkwJwYIKwYBBQUHMAGGG2h0dHA6Ly9wa2ktb2NzcC5zeW1hdXRoLmNvbTAfBgNVHSMEGDAWgBRXKXoyTcz+5DVOwB8kc85zU6vfajANBgkqhkiG9w0BAQsFAAOCAgEAqrl6FLQ+c9LYaf0igyTgErNL9XmmieiT3ohKFevJ3BN7kWkZD1znbVw3XnX5tgQaKq+AiSCldNxYEKqU+Rq9Lr26GGglBSA0s/Ds2kw+2LlnTmojAHCH3CvVRbhGHHrashmnfgwmF1TSkaWk7NxEhbt9wQoiEMkLSQeM4S4Cu+176FzEdy+zzkDkRWqeSOQO/qG2WRto/vIq30ECf6v6FtazJI1CWIqhBK5oJioSNbLsCVJhar3Uca9D11ujeZW4k2jPCsnzriTmFqVftd3k2SXUQg7wQcQcXfKBItWZt8ztn0IYoZzJa1x9l9dvXKAJvNsDoz4uDerS8z9rzLsEQvzL1yPbTp4+/6mTTAWsoaDtmkZgm3X+sffPX3XzMFmfzIHiYfUja5nKK2bs4P71tit/1U/FD2xdlpzZSupRqCMGz+UTeXI8IrN5ZR/+F8rSsmRAStjnggz/wDucwcDlJbY4/RKq3BrAi4LamLMIfwo/dbL55TDlIOd7HCfmSgabc1WO0Kji3LW/VZnP9VG8WiUG+WqtN1OQIAZmFUOWdXQGLag+I1OaZ1BXJDNsJiXcg2TGNBSEPo44Akfn9MzFGKyB5UurMN4NH0qlamhrhKiV0+b73Fjx330P/frxBmzx5NpAQhNKksx+F4z1S8Ay1o2TBIkkeAFbDzy8f/FxuytZBqUwggahMIIEiaADAgECAhAMqLZUe4nm0gaJdc2Lm4niMA0GCSqGSIb3DQEBCwUAMGwxCzAJBgNVBAYTAlVTMSMwIQYDVQQKExpBZG9iZSBTeXN0ZW1zIEluY29ycG9yYXRlZDEdMBsGA1UECxMUQWRvYmUgVHJ1c3QgU2VydmljZXMxGTAXBgNVBAMTEEFkb2JlIFJvb3QgQ0EgRzIwHhcNMTYxMTI5MDAwMDAwWhcNNDExMTI4MjM1OTU5WjB1MQswCQYDVQQGEwJVUzEjMCEGA1UEChMaQWRvYmUgU3lzdGVtcyBJbmNvcnBvcmF0ZWQxHTAbBgNVBAsTFEFkb2JlIFRydXN0IFNlcnZpY2VzMSIwIAYDVQQDExlBZG9iZSBQcm9kdWN0IFNlcnZpY2VzIEczMIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAtx8uvb0Js1xIbP4Mg65sAepReCWkgD6Jp7GyiGTa9ol2gfn5HfOV/HiYjZiOz+TuHFU+DXNad86xEqgVeGVMlvIHGe/EHcKBxvEDXdlTXB5zIEkfl0/SGn7J6vTX8MNybfSi95eQDUOZ9fjCaq+PBFjS5ZfeNmzi/yR+MsA0jKKoWarSRCFFFBpUFQWfAgLyXOyxOnXQOQudjxNj6Wu0X0IB13+IH11WcKcWEWXM4j4jh6hLy29Cd3EoVG3oxcVenMF/EMgD2tXjx4NUbTNB1/g9+MR6Nw5Mhp5k/g3atNExAxhtugC+T3SDShSEJfs2quiiRUHtX3RhOcK1s1OJgT5s2s9xGy5/uxVpcAIaK2KiDJXW3xxN8nXPmk1NSVu/mxtfapr4TvSJbhrU7UA3qhQY9n4On2sbH1X1Tw+7LTek8KCA5ZDghOERPiIp/Jt893qov1bE5rJkagcVg0Wqjh89NhCaBA8VyRt3ovlGyCKdNV2UL3bn5vdFsTk7qqmp9makz1/SuVXYxIf6L6+8RXOatXWaPkmucuLE1TPOeP7S1N5JToFCs80l2D2EtxoQXGCR48K/cTUR5zV/fQ+hdIOzoo0nFn77Y8Ydd2k7/x9BE78pmoeMnw6VXYfXCuWEgj6p7jpbLoxQMoWMCVzlg72WVNhJFlSw4aD8fc6ezeECAwEAAaOCATQwggEwMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCigJoYkaHR0cDovL2NybC5hZG9iZS5jb20vYWRvYmVyb290ZzIuY3JsMA4GA1UdDwEB/wQEAwIBBjAUBgNVHSUEDTALBgkqhkiG9y8BAQcwVwYDVR0gBFAwTjBMBgkqhkiG9y8BAgMwPzA9BggrBgEFBQcCARYxaHR0cHM6Ly93d3cuYWRvYmUuY29tL21pc2MvcGtpL3Byb2Rfc3ZjZV9jcHMuaHRtbDAkBgNVHREEHTAbpBkwFzEVMBMGA1UEAxMMU1lNQy00MDk2LTMzMB0GA1UdDgQWBBRXKXoyTcz+5DVOwB8kc85zU6vfajAfBgNVHSMEGDAWgBSmHOFtVCRMqI9Icr9uqYzV5Owx1DANBgkqhkiG9w0BAQsFAAOCAgEAcc7lB4ym3C3cyOA7ZV4AkoGV65UgJK+faThdyXzxuNqlTQBlOyXBGFyevlm33BsGO1mDJfozuyLyT2+7IVxWFvW5yYMV+5S1NeChMXIZnCzWNXnuiIQSdmPD82TEVCkneQpFET4NDwSxo8/ykfw6Hx8fhuKz0wjhjkWMXmK3dNZXIuYVcbynHLyJOzA+vWU3sH2T0jPtFp7FN39GZne4YG0aVMlnHhtHhxaXVCiv2RVoR4w1QtvKHQpzfPObR53Cl74iLStGVFKPwCLYRSpYRF7J6vVS/XxW4LzvN2b6VEKOcvJmN3LhpxFRl3YYzW+dwnwtbuHW6WJlmjffbLm1MxLFGlG95aCz31X8wzqYNsvb9+5AXcv8Ll69tLXmO1OtsY/3wILNUEp4VLZTE3wqm3n8hMnClZiiKyZCS7L4E0mClbx+BRSMH3eVo6jgve41/fK3FQM4QCNIkpGs7FjjLy+ptC+JyyWqcfvORrFV/GOgB5hD+G5ghJcIpeigD/lHsCRYsOa5sFdqREhwIWLmSWtNwfLZdJ3dkCc7yRpm3gal6qRfTkYpxTNxxKyvKbkaJDoxR9vtWrC3iNrQd9VvxC3TXtuzoHbqumeqgcAqefWF9u6snQ4Q9FkXzeuJArNuSvPIhgBjVtggH0w0vm/lmCQYiC/Y12GeCxfgYlL33buiZnNpZ1RzdKFpdHN0VG9rZW5zgaFjdmFsWQ43MIIOMzADAgEAMIIOKgYJKoZIhvcNAQcCoIIOGzCCDhcCAQMxDzANBglghkgBZQMEAgEFADCBggYLKoZIhvcNAQkQAQSgcwRxMG8CAQEGCWCGSAGG/WwHATAxMA0GCWCGSAFlAwQCAQUABCANa5+zxx4aOe9xmCdkKyaTBwRK/vXIrH6sTR6jGRQ8PwIQIVfIWFcBgtJt6Myv29MMLhgPMjAyNDEwMjQxMDE4NTBaAgkA946gyW0irP6gggu9MIIFBzCCAu+gAwIBAgIQBR6ekdcekQq75D1c7dDd2TANBgkqhkiG9w0BAQsFADBjMQswCQYDVQQGEwJVUzEXMBUGA1UEChMORGlnaUNlcnQsIEluYy4xOzA5BgNVBAMTMkRpZ2lDZXJ0IFRydXN0ZWQgRzQgUlNBNDA5NiBTSEEyNTYgVGltZVN0YW1waW5nIENBMB4XDTIzMDkwODAwMDAwMFoXDTM0MTIwNzIzNTk1OVowWDELMAkGA1UEBhMCVVMxFzAVBgNVBAoTDkRpZ2lDZXJ0LCBJbmMuMTAwLgYDVQQDEydEaWdpQ2VydCBBZG9iZSBBQVRMIFRpbWVzdGFtcCBSZXNwb25kZXIwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARNLK5R+QP/tefzBZdWrDYfEPE7mzrBFX7tKpSaxdLJo7cC9SHh2fwAeyefbtU66YaNQQzfOZX02N9KzQbH0/pso4IBizCCAYcwDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwFgYDVR0lAQH/BAwwCgYIKwYBBQUHAwgwIAYDVR0gBBkwFzAIBgZngQwBBAIwCwYJYIZIAYb9bAcBMB8GA1UdIwQYMBaAFLoW2W1NhS9zKXaaL3WMaiCPnshvMB0GA1UdDgQWBBSwNapWwyGpi87TuLyLFiVXne804TBaBgNVHR8EUzBRME+gTaBLhklodHRwOi8vY3JsMy5kaWdpY2VydC5jb20vRGlnaUNlcnRUcnVzdGVkRzRSU0E0MDk2U0hBMjU2VGltZVN0YW1waW5nQ0EuY3JsMIGQBggrBgEFBQcBAQSBgzCBgDAkBggrBgEFBQcwAYYYaHR0cDovL29jc3AuZGlnaWNlcnQuY29tMFgGCCsGAQUFBzAChkxodHRwOi8vY2FjZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRUcnVzdGVkRzRSU0E0MDk2U0hBMjU2VGltZVN0YW1waW5nQ0EuY3J0MA0GCSqGSIb3DQEBCwUAA4ICAQB4K4xCx4QQhFiUgskV+5bC9AvSyYG19a8lWMkjUcR5DEdi6guz0GUSYAzUfpCaKfD+b9gc6f4zK88OFOKWOq2L9yPB6RZSWuLgcFEyFIB1qYvF8XdSRBF/eDzjg4ux8knpF+tANOeQaMxW+xhlWsW9C63kE0V55K+oIDzVD1/RoftknDsZU3UEC4GW5HWL8aNwKenMva4mYo0cTmaojslksTFIYCsXis8KxVul23tGsDYTlF2cyMXOIsaSs1kiLaTyd9GYgUJ+PVNwA2E57IWzfWZEwNaR3/zaL9mVL73XZGfFGL8KPbwby0w755gAZ0TASml2ALN2Qr8PQpAzzlk3lCTBUQLZlMedqIWgN5w/GwielH6UNqRXznUocKW+hir9IPgYHHSBtixzydFH5q/l5qYGYKvxyIHtIY3AgA6Yw4Kts+AdC+MbQANTPDK1MdNocW+9dOJxSqjLr+cyU0Jd7IMKl1Mj/vcx0D/cv2eRcfwEFqzlwluenVez+HBQSZfMx6op5YZDkrWdZttvvR5avngtISdpZBdS7s0XSSW/+dS16DykZ6KRQ54Ol6aA+3husOGKQMffj9NCblKAbGEq3bLhYslskEBgQJ4yOvYIG0i3FvoScrbop2sWsFZSLSZEtnleWeF7MT4O3/NrkZHbTdIUx3iPdwjdzlnkXm5yuzCCBq4wggSWoAMCAQICEAc2N7ckVHzYR6z9KGYqXlswDQYJKoZIhvcNAQELBQAwYjELMAkGA1UEBhMCVVMxFTATBgNVBAoTDERpZ2lDZXJ0IEluYzEZMBcGA1UECxMQd3d3LmRpZ2ljZXJ0LmNvbTEhMB8GA1UEAxMYRGlnaUNlcnQgVHJ1c3RlZCBSb290IEc0MB4XDTIyMDMyMzAwMDAwMFoXDTM3MDMyMjIzNTk1OVowYzELMAkGA1UEBhMCVVMxFzAVBgNVBAoTDkRpZ2lDZXJ0LCBJbmMuMTswOQYDVQQDEzJEaWdpQ2VydCBUcnVzdGVkIEc0IFJTQTQwOTYgU0hBMjU2IFRpbWVTdGFtcGluZyBDQTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAMaGNQZJs8E9cklRVcclA8TykTepl1Gh1tKD0Z5Mom2gsMyD+Vr2EaFEFUJfpIjzaPp985yJC3+dH54PMx9QEwsmc5Zt+FeoAn39Q7SE2hHxc7Gz7iuAhIoiGN/r2j3EF3+rGSs+QtxnjupRPfDWVtTnKC3r07G1decfBmWNlCnT2exp39mQh0YAe9tEQYncfGpXevA3eZ9drMvohGS0UvJ2R/dhgxndX7RUCyFobjchu0CsX7LeSn3O9TkSZ+8OpWNs5KbFHc02DVzV5huowWR0QKfAcsW6Th+xtVhNef7Xj3OTrCw54qVI1vCwMROpVymWJy71h6aPTnYVVSZwmCZ/oBpHIEPjQ2OAe3VuJyWQmDo4EbP29p7mO1vsgd4iFNmCKseSv6De4z6ic/rnH1pslPJSlRErWHRAKKtzQ87fSqEcazjFKfPKqpZzQmiftkaznTqj1QPgv/CiPMpC3BhIfxQ0z9JMq++bPf4OuGQq+nUoJEHtQr8FnGZJUlD0UfM2SU2LINIsVzV5K6jzRWC8I41Y99xh3pP+OcD5sjClTNfpmEpYPtMDiP6zj9NeS3YSUZPJjAw7W4oiqMEmCPkUEBIDfV8ju2TjY+Cm4T72wnSyPx4JduyrXUZ14mCjWAkBKAAOhFTuzuldyF4wEr1GnrXTdrnSDmuZDNIztM2xAgMBAAGjggFdMIIBWTASBgNVHRMBAf8ECDAGAQH/AgEAMB0GA1UdDgQWBBS6FtltTYUvcyl2mi91jGogj57IbzAfBgNVHSMEGDAWgBTs1+OC0nFdZEzfLmc/57qYrhwPTzAOBgNVHQ8BAf8EBAMCAYYwEwYDVR0lBAwwCgYIKwYBBQUHAwgwdwYIKwYBBQUHAQEEazBpMCQGCCsGAQUFBzABhhhodHRwOi8vb2NzcC5kaWdpY2VydC5jb20wQQYIKwYBBQUHMAKGNWh0dHA6Ly9jYWNlcnRzLmRpZ2ljZXJ0LmNvbS9EaWdpQ2VydFRydXN0ZWRSb290RzQuY3J0MEMGA1UdHwQ8MDowOKA2oDSGMmh0dHA6Ly9jcmwzLmRpZ2ljZXJ0LmNvbS9EaWdpQ2VydFRydXN0ZWRSb290RzQuY3JsMCAGA1UdIAQZMBcwCAYGZ4EMAQQCMAsGCWCGSAGG/WwHATANBgkqhkiG9w0BAQsFAAOCAgEAfVmOwJO2b5ipRCIBfmbW2CFC4bAYLhBNE88wU86/GPvHUF3iSyn7cIoNqilp/GnBzx0H6T5gyNgL5Vxb122H+oQgJTQxZ822EpZvxFBMYh0MCIKoFr2pVs8Vc40BIiXOlWk/R3f7cnQU1/+rT4osequFzUNf7WC2qk+RZp4snuCKrOX9jLxkJodskr2dfNBwCnzvqLx1T7pa96kQsl3p/yhUifDVinF2ZdrM8HKjI/rAJ4JErpknG6skHibBt94q6/aesXmZgaNWhqsKRcnfxI2g55j7+6adcq/Ex8HBanHZxhOACcS2n82HhyS7T6NJuXdmkfFynOlLAlKnN36TU6w7HQhJD5TNOXrd/yVjmScsPT9rp/Fmw0HNT7ZAmyEhQNC3EyTN3B14OuSereU0cZLXJmvkOHOrpgFPvT87eK1MrfvElXvtCl8zOYdBeHo46Zzh3SP9HSjTx/no8Zhf+yvYfvJGnXUsHicsJttvFXseGYs2uJPU5vIXmVnKcPA3v5gA3yAWTyf7YGcWoWa63VXAOimGsJigK+2VQbc61RWYMbRiCQ8KvYHZE/6/pNHzV9m8BPqC3jLfBInwAM1dwvnQI38AC+R2AibZ8GV2QqYphwlHK+Z/GqSFD/yYlvZVVCsfgPrA8g4r5db7qS9EFUrnEw4d2zc4GqEr9u3WfPwxggG5MIIBtQIBATB3MGMxCzAJBgNVBAYTAlVTMRcwFQYDVQQKEw5EaWdpQ2VydCwgSW5jLjE7MDkGA1UEAxMyRGlnaUNlcnQgVHJ1c3RlZCBHNCBSU0E0MDk2IFNIQTI1NiBUaW1lU3RhbXBpbmcgQ0ECEAUenpHXHpEKu+Q9XO3Q3dkwDQYJYIZIAWUDBAIBBQCggdEwGgYJKoZIhvcNAQkDMQ0GCyqGSIb3DQEJEAEEMBwGCSqGSIb3DQEJBTEPFw0yNDEwMjQxMDE4NTBaMCsGCyqGSIb3DQEJEAIMMRwwGjAYMBYEFNkauTP+F63pgh6mE/WkOnFOPn59MC8GCSqGSIb3DQEJBDEiBCARmKcjHH4aea8K7RhammkkPrNeChAAtPF57KtGWF4jGTA3BgsqhkiG9w0BCRACLzEoMCYwJDAiBCCC2vGUlXs2hAJFj9UnAGn+YscUVvqeC4ar+CfoUyAn2TAKBggqhkjOPQQDAgRIMEYCIQDgyrRFArRkrzIShtfewqD1pURo6RRIFww08BvuGf+XaAIhAKGJKNrxpzQzjjQpSO1GQp6bp5w4znmqOh/nRSbO9/PCY3BhZFkThgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPZZAQAeDj9Dtvja2l6n7XqC+NNaO45CTXOXY8OA8iZiL6h9iXrhMc3xZScoCKY5yKX6+SB/zlnDm1sNV6DOoFm2zdDC/MUvlscie733OPUGSfVS5gKI5by5FAmWh6mhfMiDeitMQ7Kk1YgolkgLWvPDXnB4rf30FW8+HTcUKaYyu+9p9iPprjIagsRuytnbt/U4L7yYarGHkGtMXhU2d2r9skeZCj/OI1E8gW297iYOPuRVql9VPCoVmvZVS8PFUdoXg+Go6LsMnZBwR3+Z00Imkj5Fo3IpRw0VID31NEkwnDPaVtCOw39sY+gi2HJFgUFI+4pmIKIOKgx4qwJLo+N9/s5n

Glass Fiber-Optic Cables

What Types of Ja­ckets Are there for Glass Fiber-​Optic Cables?

Plas­tic, PVC

The most cost-​effective va­riant. Sui­table for stan­dard ap­pli­ca­tions that do not re­quire spe­cial re­sis­tance to en­vi­ron­men­tal in­fluences.

Stain­less Steel

Pro­vides the hi­ghest level of pro­tec­tion against me­cha­ni­cal stress. Less flexible ins­tal­la­tion as lar­ger ben­ding radii are re­qui­red. No pro­tec­tion against gasses or li­quids.

Si­li­cone

Maxi­mum re­sis­tance to ag­gres­sive media. Ab­so­lu­te­ly tight, so fluids and gasses can­not pe­ne­trate the ja­cket and da­mage the op­ti­cal fi­bers. FDA com­pliant.

What Are the Ope­ra­tio­nal Prin­ciples of Fiber-​Optic Sen­sors?

Re­flex Mode

In the case of re­flex mode, the emit­ter and the re­cei­ver are en­clo­sed in a single hou­sing. The light emit­ted by the emit­ter hits the test ob­ject and is re­tur­ned to the re­cei­ver. The ob­ject is de­tec­ted based on the amount of re­flec­ted light rea­ching the re­cei­ver of the fiber-​optic cable.

Through-​Beam Mode

The through-​beam model consists of an op­po­sing emit­ter and re­cei­ver. As soon as the test ob­ject passes through the space bet­ween the emit­ter and re­cei­ver, the light of the fiber-​optic cable is in­ter­rup­ted. De­tec­tion is then per­for­med by re­du­cing the re­cei­ved light in­ten­si­ty.

Retro-​Reflex Sen­sor

With the retro-​reflex sen­sor prin­ciple, the emit­ter and re­cei­ver are lo­ca­ted in a hou­sing, while on the op­po­site side a re­flec­tor is po­si­tio­ned. The test ob­ject is de­tec­ted when the light re­flec­ted back by the re­flec­tor is ei­ther com­ple­te­ly in­ter­rup­ted or re­du­ced. 

Fiber-​Optic Cable Bands

Fiber-​optic cable bands are used to mo­ni­tor areas. In contrast to spot-​shaped light spots, which only mo­ni­tor the pre­sence of ob­jects wi­thin one point, fiber-​optic cable bands de­tect se­ve­ral cen­ti­me­ters. The sen­sor de­tects the ob­ject as soon as the si­gnal is wea­ke­ned or com­ple­te­ly in­ter­rup­ted.

Com­pa­ri­son of Dy­na­mic Read­just­ment and Jump De­tec­tion

Both dy­na­mic read­just­ment and jump de­tec­tion are sui­table for re­liable de­tec­tion of ob­jects under chan­ging en­vi­ron­men­tal condi­tions. In dy­na­mic read­just­ment, a quasi-​fixed thre­shold value is used, whe­reas jump de­tec­tion does not re­quire a thre­shold value and only eva­luates si­gnal changes ins­tead.

Fixed Swit­ching Point

The most com­mon mode of ope­ra­tion of a sen­sor is based on a fixed swit­ching point. The sen­sor de­ter­mines the thre­shold value or the swit­ching point du­ring the teach-​in pro­cess in ac­cor­dance with a spe­ci­fied teach-​in logic. In nor­mal teach, this cor­res­ponds to 50% of the cur­rent si­gnal, for example. If the am­bient condi­tions and the ob­jects to be de­tec­ted are very constant, the mode of ope­ra­tion with a fixed swit­ching point of­fers the hi­ghest in­sen­si­ti­vi­ty to in­ter­fe­rence, as ex­ter­nal in­fluences can­not change the swit­ching point: If the si­gnal is above the de­fi­ned thre­shold, the out­put is ac­ti­va­ted; if it is below, the out­put re­mains in­ac­tive. Ho­we­ver, if the si­gnal is al­te­red due to conta­mi­na­tion, for example, this can lead to per­ma­nent mal­func­tions.

Dy­na­mic Read­just­ment

The dy­na­mic read­just­ment is par­ti­cu­lar­ly sui­table for the re­flex mode with sta­tic back­grounds as well as for the through-​beam mode. The non-​switched state should pre­vail, as the thre­shold value is only read­jus­ted in this state. If there is conta­mi­na­tion on the fiber-​optic head or on the back­ground, this is com­pen­sa­ted by dy­na­mic ad­just­ment of the thre­shold value.

Jump De­tec­tion

The ab­so­lute si­gnal va­lues are ir­re­le­vant for jump de­tec­tion. Ins­tead, the di­rec­tion of the si­gnal change (ne­ga­tive, po­si­tive or both di­rec­tions), the ma­gni­tude of the change and the ob­ser­va­tion per­iod can be in­clu­ded in the eva­lua­tion. This en­ables the de­tec­tion of high­ly va­riable ob­jects (e.g. in color or sur­face fi­nish) on non-​static back­grounds (such as a slow­ly soi­ling conveyor belt) as well as the de­tec­tion of ob­jects wi­thout prior tea­ching (e.g. with chan­ging batches).

Over­view of Fiber-​Optic Heads

An­gled

An­gled sen­sor heads are ideal for tight spaces where the op­ti­cal axis and cable out­let must be orien­ted dif­fe­rent­ly. Thanks to the thread, the sen­sor heads can be ea­si­ly scre­wed into pre­pa­red holes or fas­te­ned to an angle or plate with two nuts.

L Type

The L type al­lows easy moun­ting with two screws and of­fers pre­de­fi­ned po­si­tions of the op­ti­cal axes. Exact ali­gn­ment is not ne­ces­sa­ry due to the large aper­ture angle of the fiber-​optic cables.
 

Flat

Flat sen­sor heads can be ea­si­ly in­te­gra­ted into the base of the work­piece car­rier. The flexi­bi­li­ty of the cable out­let on the sen­sor head al­lows easy cable rou­ting to the left, right or rear.

Flexible

The thin, long metal sen­sor lance can be adap­ted to the spe­ci­fic re­qui­re­ments of the res­pec­tive ap­pli­ca­tion by simple ben­ding.

Fiber-​Optic Cable Bands

Fiber-​optic cable bands in through-​beam mode are ideal for mo­ni­to­ring large areas. Re­flex fiber-​optic cable bands, on the other hand, are par­ti­cu­lar­ly ef­fec­tive for de­tec­ting he­te­ro­ge­neous ob­jects and can also be used for mea­su­ring ap­pli­ca­tions through the eva­lua­tion of the re­flec­ted light.

Mi­nia­ture

Mi­nia­ture sen­sor heads are par­ti­cu­lar­ly sui­table for ap­pli­ca­tions in the tigh­test of spaces.

Thread

Threa­ded sen­sor heads allow for quick and easy ins­tal­la­tion. They can ei­ther be scre­wed di­rect­ly into pre-​drilled holes or fixed to bra­ckets or plates using two nuts.

Smooth

Smooth sen­sor heads are ideal for use in confi­ned spaces and can be in­ser­ted or glued into pre­fa­bri­ca­ted moun­ting bra­ckets.

The Fol­lo­wing Must Be Ob­ser­ved when Ins­tal­ling Fiber-​Optic Sen­sors

To en­sure re­liable ob­ject de­tec­tion and ac­cu­rate mea­su­re­ment data, the fol­lo­wing ins­truc­tions should be ob­ser­ved when ins­tal­ling the sen­sor.

Length and Cut­ting

Fiber-​optic cables are avai­lable in va­rious lengths. Plas­tic fiber-​optic cables can be cut to size by the cus­to­mer, glass fiber-​optic cables only in­dus­trial­ly, as they must be ground and po­li­shed after cut­ting. The length has lit­tle ef­fect on the de­tec­tion range, but lon­ger fiber-​optic cables let less light through.


Tip: Se­lect a sui­table glass fiber-​optic cable.

De­tec­tion Range

Due to the large aper­ture angle, fiber-​optic cables have only a small de­tec­tion range. Hi­gher de­tec­tion ranges can be achie­ved with lar­ger fiber bundle/core dia­me­ters or with lenses that focus the light.


Tip: Use fiber-​optic cables pri­ma­ri­ly for short ranges and de­tec­tion of small parts.

Ben­ding Ra­dius

Fiber-​optic cables are flexible, but mi­ni­mum ben­ding radii must be main­tai­ned to avoid da­mage and light loss. High-​flex plas­tic fiber-​optic cables are sui­table for tight ben­ding radii or mo­ving ins­tal­la­tions. The fol­lo­wing ap­plies in ge­ne­ral: Smal­ler dia­me­ters allow smal­ler ben­ding radii.

Tip: Ins­tal­la­tion of high-​flex fiber-​optic cables.

Tem­pe­ra­ture

Los conduc­tores de luz de plástico y de fibra óptica se di­fe­ren­cian por su re­sis­ten­cia a la tem­pe­ra­tu­ra. Por en­ci­ma de los 85 °C, se debe uti­li­zar fibra óptica de vi­drio con re­ves­ti­mien­to de acero in­oxi­dable o si­li­co­na.

Conse­jo: Gra­cias a las lon­gi­tudes in­di­vi­duales, el módulo de análisis tam­bién se puede co­lo­car en el ar­ma­rio de distribución.

Alineación del sen­sor

En el modo ré­flex, el emi­sor y el re­cep­tor deben ins­ta­larse con un ángulo de 90° res­pec­to del ob­je­to de en­sayo cuan­do se acer­quen la­te­ral­mente para ga­ran­ti­zar un com­por­ta­mien­to de conexión y desconexión uni­forme.

Conse­jo: Una alineación plana res­pec­to del ob­je­to da lugar a un des­pla­za­mien­to con en­cen­di­do y apa­ga­do re­tar­da­dos.

Cable con emi­sor específico

En el caso de ca­be­zales de fibra óptica con emisión de la luz co­axial y con de­ter­mi­na­das ban­das lu­mi­no­sas, debe re­spe­tarse es­tric­ta­mente la cor­rec­ta asignación del emi­sor del ca­be­zal de la fibra óptica al emi­sor del am­pli­fi­ca­dor.

Conse­jo: Los am­pli­fi­ca­dores están mar­ca­dos con fle­chas con tal fin.

Sectors and Industries which Use Fiber-Optic Sensors

In the pro­duc­tion of metal pro­files, the pre­sence and di­men­sions of the ob­jects must be de­tec­ted be­fore a clam­ping de­vice se­cures them in place. Pro­files can be black, white, chrome, glos­sy or matt. Glass fiber-​optic light cur­tains based on the transmitter-​receiver prin­ciple are used in confi­ned spaces, to­ge­ther with a uni­ver­sal re­flex sen­sor. The op­ti­cal fi­bers are ar­ran­ged in a single line to create a light band. The width is mea­su­red, the li­near si­gnal is out­put pro­por­tio­nal to the glass fiber cover and the cor­rect po­si­tion is de­ter­mi­ned.

Which Ob­jects Can­not Be Op­ti­mal­ly De­tec­ted by Fiber-​Optic Sen­sors?

  • Water and other clear li­quids that ab­sorb light stron­gly or change its path through re­frac­tion can lead to in­ac­cu­rate mea­su­re­ments.
  • High­ly trans­pa­rent ob­jects such as clear glass, which allow light to pass through com­ple­te­ly wi­thout re­flec­ting it, make de­tec­tion more dif­fi­cult.
  • Deep black ob­jects that ab­sorb the in­co­ming light hea­vi­ly and hard­ly or not re­flect at all hin­der the si­gnal re­turn to the sen­sor.
  • Ex­tre­me­ly shiny ob­jects that re­flect light in un­pre­dic­table di­rec­tions prevent ac­cu­rate ob­ject de­tec­tion.
     
 

 
Comparaison des produits