DE

BB1C

Control Unit mit Profinet

Schnittstellenprotokoll

Inhaltsverzeichnis

1.	Bes	timmungsgemäße Verwendung	3		
2.	Netz	zwerkübersicht	3		
3.	Eing	gangs- und Ausgangsdaten	5		
	3.1	Status	6		
	3.2	Befehle	7		
	3.3	Befehle und Status	9		
		3.3.1 Allgemeines Befehls- und Statusverhalten	9		
		3.3.2 Befehl "Trigger"			
		3.3.3 Befehl "Load project"			
		3.3.4 Befehl "Acquisition Start/Stop"			
	3.4	Benutzerdefinierte Prozessdaten	15		
4.	Eins	stellungen der Control Unit	16		
	4.1	Installation der Konfigurationsdateien			
	4.2	Konfiguration der uniVision-Applikationen und -Projekte	18		
	4.3	Gerät Industrial Ethernet	19		
		4.3.1 Gerät an SPS	20		
		4.3.2 SPS an Gerät	22		
		4.3.3 Fehlerbehandlung	22		
5.	SPS	S-Einstellungen	23		
	5.1	GSDML-Datei	23		
	5.2	Control Unit zum SPS-Netzwerk hinzufügen	25		
	5.3	5.3 Konfiguration des Profinet-Netzwerks			
	5.4	Konfiguration der Eingangs- und Ausgangsdaten	27		
	5.5	.5 Konfiguration auf SPS herunterladen			
	5.6	PLC-Variablen	30		
6.	Beis	spiel SPS-Programme	32		
7.	Anh	ränge	33		
	7.1	RTE_Config_B0xx (001 – 012)	33		
	7.2				
	7.3	RTE_Config_B2xx (201 – 210)	34		

1. Bestimmungsgemäße Verwendung

Die Control Unit mit Digitalkameras oder 2D-/3D-Profilsensoren ist in der Lage, über Profinet mit einer SPS zu kommunizieren. So können Prozessdaten zwischen Control Unit und SPS ausgetauscht werden. Darüber hinaus sendet die Control Unit einen Status an die SPS, die ihrerseits Befehle an die Control Unit senden kann.

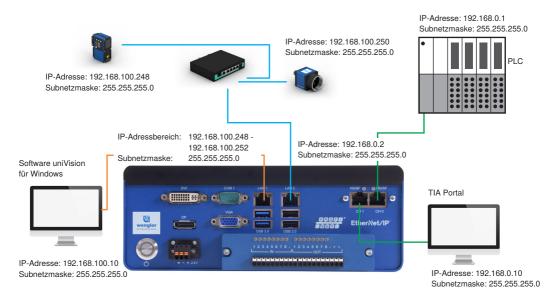
HINWEIS!

Im Handbuch wird die Profinet-Integration mit einer Control Unit BB1Cxx und einer SPS S7-1200 von Siemens mit TIA Portal V15 gezeigt. Details zu den Control Units BB1C5xx befinden sich in der entsprechenden Hardware Anleitung.

2. Netzwerkübersicht

- Verwenden Sie LAN1 und LAN2 (Nummer 1), um Digitalkameras oder 2D-/3D-Profilsensoren an die Control Unit anzuschließen. Weitere Netzwerkfunktionalitäten (z. B. uniVision-Software für Windows, Website, Prozessdaten über TCP, UDP und FTP) sind über LAN1 und LAN2 verfügbar.
- Verwenden Sie CH0 und CH1 (Nummer 2) nur für die Profinet-Kommunikation mit einer SPS. Im Profinet-Netzwerk darf kein Hub verwendet werden. Ein Switch darf verwendet werden, wenn sowohl Priority Tagging als auch LLPD (100 Mbit/s, Full Duplex) unterstützt werden.

HINWEIS!


Bei den Control Units BB1C5xx sind die beiden PROFINET-Anschlüsse auf der Vorderseite nicht beschriftet. Details zur Position der PROFINET-Anschlüsse der BB1C5xx befinden sich in der entsprechenden Hardware-Anleitung.

Software VisionApp 360

Profinet-LEDs an der Control Unit BB1C1xx (Bei den Control Units BB1C5xx sind die MS/SF bzw. die NS/BF LEDs nicht sichtbar):

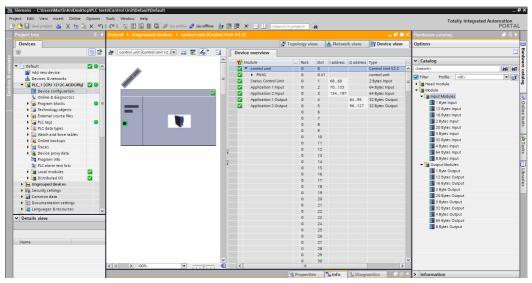
LED	Farbe	Status	Bedeutung
MS/SF	(Aus)	Aus	Kein Fehler
(Systemfehler)	(Rot)	Blinkend (1 Hz, für 3 s)	Die SPS hat das DCP-Signal (Discovery and Configuration Protocol) aktiviert, um das entsprechende Profinet-Gerät zu finden.
	(Rot)	An	Systemfehler
NS/BF	(Aus)	Aus	Kein Fehler
(Bus-Fehler)	(Rot)	Blinkend (2 Hz)	Kein Datenaustausch
	(Rot) An		Keine Profinet-Konfiguration
			Langsame oder fehlende physische Verbindung
LINK	(Grün)	An	Ethernet-Verbindung ist verfügbar
(CH0 & CH1)	(Aus)	Aus	Keine Ethernet-Verbindung verfügbar
RX/TX (CH0 & CH1)	(Gelb) Blinkend		Control Unit sendet oder empfängt Ethernet-Frames: • 10 Hz für starken Ethernet-Verkehr
			Unregelmäßige Intervalle für schwachen Ethernet- Verkehr
	(Aus)	Aus	Control Unit sendet oder empfängt keine Ethernet- Frames

Beispiel: Ein Netzwerk besteht aus Digitalkameras, weCat3D-Sensoren und einem PC mit der Software uniVision. Ein weiteres Netzwerk wird für die Profinet-Kommunikation mit der SPS und für einen PC mit der Software TIA Portal verwendet.

4 Netzwerkübersicht

3. Eingangs- und Ausgangsdaten

In der SPS-Ansicht stehen folgende Ein- und Ausgangsdaten zur Verfügung:


- Control Unit
 - Eingänge (Gerät an SPS)
 - · 2 Byte: Status
- · Für jede uniVision-Applikation
 - Eingänge (Gerät an SPS)
 - · 2 Byte: Status
 - x Byte: Benutzerdefinierte Prozessdaten
 - Ausgänge (SPS an Gerät)
 - · 4 Byte: Befehle
 - x Byte: Benutzerdefinierte Prozessdaten

HINWEIS!

Die Größe der benutzerdefinierten Ein- und Ausgangsdaten hängt von der Konfigurationsdatei ab. Einzelheiten zu den Konfigurationsdateien finden Sie im Anhang des Handbuchs (siehe Kapitel "5.5 Konfiguration auf SPS herunterladen" auf Seite 28).

Beispiel: Das folgende Beispiel zeigt die Standardkonfiguration der Control Unit. Es ist möglich, Ein- und Ausgangsdaten mit bis zu zwei uniVision-Applikationen zu übertragen.

HINWEIS!

Ein- und Ausgangssteckplätze der Control Unit müssen nacheinander (lückenlos und in der richtigen Reihenfolge!) hinzugefügt werden, um die im uniVision-Projekt vorgesehenen Adress-Offsets nutzen zu können.

3.1 Status

Jedes uniVision-Gerät sendet eine Statusinformation mit einer Größe von zwei Byte an die SPS. Die folgenden Statusbits sind für jedes uniVision-Gerät gültig. Nicht verwendete Bits sind auf "false" gesetzt.

Control Unit

Name	Datentyp	Bit	Beschreibung
Operation ready	Bool	0	Steht auf true, wenn die Control Unit betriebsbereit ist.

uniVision-Applikation

Name	Datentyp	Bit	Beschreibung	
Operation ready	Bool	0	Steht auf true, wenn die uniVision-Applikation betriebsbereit ist. Mögliche Gründe dafür, dass die Applikation nicht betriebsbereit ist: • Die Control Unit ist noch nicht vollständig hochgefahren bzw. das Startprojekt ist noch nicht vollständig geladen.	
			In der uniVision-Applikation wird aktuell ein Projekt geladen.	
			Keine Netzwerkverbindung zwischen dem Aufnahmegerät (z. B. Digitalkamera) und der Control Unit Die Stromversorgung des Aufnahmegeräts (z. B. Digitalkamera) ist ausgeschaltet Die uniVision-Applikation kann keine Verbindung mit dem Aufnahmegerät herstellen, weil eine offene Verbindung von einer anderen uniVision-Applikation besteht Im uniVision-Projekt ist kein Aufnahmegerät ausgewählt	
Toggle	Bool	1	Ändert sich jedes Mal, wenn eine Datenauswertung abgeschlossen ist. Kann verwendet werden, um nach neuen Messergebnissen zu suchen.	
Processing	Bool	2	Steht auf true, wenn die uniVision-Applikation Daten auswertet.	
Command Acknowledge	Bool	3	lst ein Echosignal des Befehlsignals, das dazu dient, den Empfang des Befehls zu überprüfen.	
Command Ready	Bool	4	Steht auf true, wenn die uniVision-Applikation bereit ist, Befehle zu empfangen. HINWEIS! Befehle an uniVision-Geräte dürfen nur geschickt werden, wenn das Command Ready Signal aktiv ist. Vor dem Senden von Befehlen muss somit der Zustand des Command Ready Signals geprüft werden.	
Command Error	Bool	5	Steht auf true, wenn ein Fehler im Befehl enthalten war. Mögliche Ursachen für Befehlsfehler: Es werden mehrere Befehle gleichzeitig gesendet Der Befehlsparameter enthält einen ungültigen Eintrag Der Befehl "Projekt laden" kann nicht ausgeführt werden, weil das Projekt nicht verfügbar ist	

Beispiel: Das folgende Beispiel zeigt die Statusbits einer uniVision-Applikation in TIA Portal.

	i	Name	Address	Display format	Monitor value
1		"Operation Ready"	%170.0	Bool	■ TRUE
2		"Toggle Bit"	%170.1	Bool	■ FALSE
3		"Processing"	%170.2	Bool	■ FALSE
4		"Command Acknowledge"	%170.3	Bool	■ FALSE
5		"Command Ready"	%170.4	Bool	■ TRUE
6		"Command Error"	%170.5	Bool	■ FALSE

3.2 Befehle

Befehle (z. B. Trigger-Befehl) werden von der SPS an die uniVision-Applikation gesendet. Insgesamt bestehen die Befehle aus vier Byte – unterteilt in das erste Bytepaar für den Befehl und das zweite Bytepaar für einen Befehlsparameter.

HINWEIS!

Befehle an uniVision-Geräte dürfen nur geschickt werden, wenn das Command Ready Signal aktiv ist. Vor dem Senden von Befehlen muss somit der Zustand des Command Ready Signals geprüft werden.

Befehle für uniVision-Applikation (erstes Bytepaar)

Name	Datentyp	Bit	Beschreibung
Reserved Bool 0 N		0	Nicht belegt
Load project	Bool	1	Wenn der Wert von FALSE auf TRUE geändert wird, lädt die uniVision Applikation das durch den Befehlsparameter 0 definierte Projekt. HINWEIS! Damit Projekte über Profinet geladen werden können, müssen alle Projekte im folgenden Format gespeichert sein: "xxx_testproject.u_p" (x = eine beliebige ganze Zahl von 0 bis 9). Es können maximal 255 Projekte für alle Applikationen zusammen verwendet werden. Die Projektnummern können zwischen 1 und 255 eingestellt werden. Verwenden Sie für jede uniVision-Projektdatei eine eindeutige Nummer.
Reserved	Bool	2	Nicht belegt

Software VisionApp 360

Trigger	Bool	3	Wenn der Wert von FALSE auf TRUE geändert wird, sende die uniVision Applikation einen Triggerbefehl an das Aufnah megerät (z. B. Digitalkamera). HINWEIS! Die Triggerquelle des Aufnahmegeräts muss auf Software eingestellt sein, um eine Ansteuerung über Profinet zu ermöglichen. Bei Digitalkameras muss hierfür der Triggerselektor "Belichtung Start" ausgewählt sein und für 2D-/3D-Profilsensoren der Triggerselektor "Zeilenstart".	
Acquisition	Bool	4	Wenn der Wert von FALSE auf TRUE geändert wird, startet oder stoppt die uniVision Applikation die Aufnahme – abhängig vom Befehlsparameter. • Befehlsparameter 0: Wert 0 – Stoppt die Aufnahme • Befehlsparameter 0: Wert 1 – Startet die Aufnahme HINWEIS! Nur bei einer aktiven Aufnahme ist das Gerät bereit, Triggersignale zu empfangen. Nach dem Systemstart oder nach dem Laden eines Projekts wird die Aufnahme automatisch gestartet.	

Befehlsparameter für uniVision-Applikation (zweites Bytepaar)

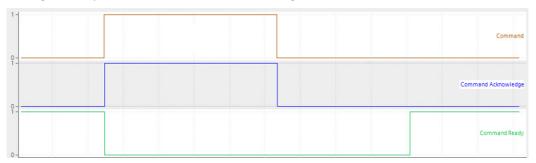
Name	Datentyp	Byte	Beschreibung
Parameter 0	Byte	3	Niederwertiges Byte des Befehlsparameters
Parameter 1	Byte	4	Höherwertiges Byte des Befehlsparameters

Beispiel: Das folgende Beispiel zeigt die Befehlsbits einer uniVision-Applikation in TIA Portal.

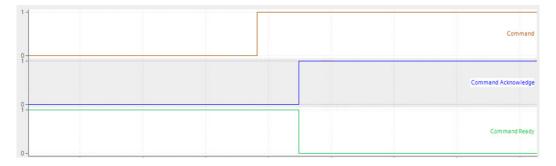
i	Name	Address	Display format	Monitor value
34	"Load project"	%Q64.1	Bool	■ FALSE
35	"Trigger"	%Q64.3	Bool	■ FALSE
36	"Acquisition"	%Q64.4	Bool	■ FALSE
37	"Parameter Low"	%QB66	DEC	0
38	"Parameter High"	%QB67	DEC	0

3.3 Befehle und Status

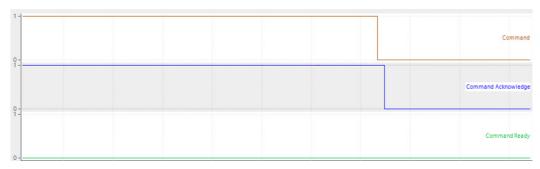
Für jeden Befehl, der von der SPS an die uniVision-Applikation gesendet wird, wird über die Statusbits eine Antwort von der uniVision-Applikation an die SPS zurückgesendet.


HINWEIS!

Befehle an uniVision-Geräte dürfen nur geschickt werden, wenn das Command Ready Signal aktiv ist. Vor dem Senden von Befehlen muss somit der Zustand des Command Ready Signals geprüft werden.


3.3.1 Allgemeines Befehls- und Statusverhalten

Das folgende Beispiel für einen Befehl und seine Statusbits gilt für alle Arten von Befehlen.

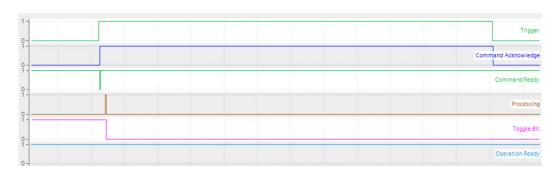


Erklärung:

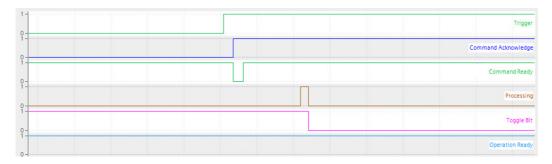
- Der Befehl (z. B. der Befehl "Load project") wird von der SPS an die uniVision-Applikation gesendet.
- Die uniVision-Applikation antwortet nach Empfang des Befehls mit den Statusbits:
 - Das "Command Acknowledge"-Signal wechselt von FALSE auf TRUE (Echosignal des Befehls)
 - Das "Command Ready"-Signal wechselt von TRUE auf FALSE

 Wenn der Befehl, der von der SPS an die uniVision-Applikation gesendet wurde, entfernt wird, ändert sich auch das "Command Acknowledge"-Signal von TRUE auf FALSE. (Echosignal des Befehls).

 Wenn die Ausführung des Befehls beendet ist, ändert sich das "Command Ready"-Signal von FALSE auf TRUE und die uniVision-Applikation ist bereit, einen neuen Befehl zu empfangen.


3.3.2 Befehl "Trigger"

Wenn ein Triggerbefehl von der SPS an die uniVision-Applikation gesendet wird, leitet die Applikation den Triggerbefehl an das Aufnahmegerät (z. B. Digitalkamera) weiter. Das Aufnahmegerät nimmt ein Bild oder ein Profil auf.



HINWEIS!

Befehle an uniVision-Geräte dürfen nur geschickt werden, wenn das Command Ready Signal aktiv ist. Vor dem Senden von Befehlen muss somit der Zustand des Command Ready Signals geprüft werden.

- Wenn die uniVision-Applikation den Triggerbefehl empfängt, ändert sich das "Command Acknowledge"-Signal von FALSE zu TRUE und das "Command Ready"-Signal von TRUE zu FALSE.
- Sobald das Aufnahmegerät den Empfang des Triggerbefehls bestätigt hat, ändert sich das "Command Ready"-Signal von FALSE zu TRUE.
- Dann erfolgt die Datenerfassung (z. B. Bild- oder Profilerfassung) und die Daten werden über das Netzwerk an die Control Unit gesendet.
- Solange die uniVision-Applikation die Daten auswertet (z. B. Bild oder Profil), ist das "Processing"-Signal auf TRUE gesetzt.
- Sobald die Auswertung abgeschlossen ist, ändert sich das "Processing"-Signal von TRUE zu FALSE, das Toggle-Bit ändert sich und alle benutzerdefinierten Prozessdaten stehen zur Verfügung.

Software VisionApp 360

HINWEIS!

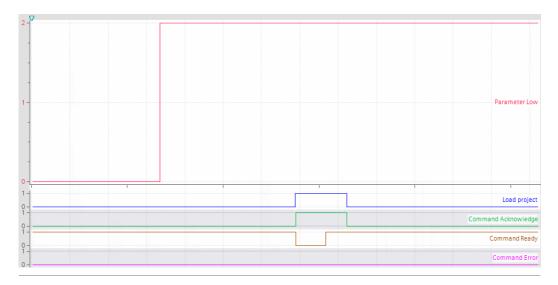
 Nach dem Start der Control Unit oder nach dem Laden eines Projekts über Profinet kann ein Befehl (z.B. Triggerbefehl) gesendet werden, sobald sich das "Command Ready"-Signal von FALSE auf TRUE geändert hat.

- Verwenden Sie das Toggle-Bit aus dem Status, um festzustellen, ob die Ergebnisse, die zum Triggersignal gehören, bereits verfügbar sind.
- Signale aus dem Status der uniVision-Applikation liegen teilweise nur sehr kurz an, da beispielsweise die Datenauswertung je nach Projektgröße sehr schnell erfolgt. Um dennoch z.B. alle "Processing"-Signale auf der Steuerung zu empfangen, darf die Profinet Zykluszeit maximal halb so groß sein wie die Prozesszeit der Ausführung. Es wird empfohlen eine Profinet-Zykluszeit von maximal 1 ms zu verwenden.

3.3.3 Befehl "Load project"

Wenn der Befehl "Load project" von der SPS an die uniVision-Applikation gesendet wird, lädt die uniVision-Applikation das Projekt, das durch den Befehlsparameter 0 definiert wird. Die Nummer, die im Projektnamen verwendet wird, muss über den Befehlsparameter gesendet werden.

HINWEIS!


Damit Projekte über Profinet geladen werden können, müssen alle Projekte im folgenden Format gespeichert sein: "xxx_testproject.u_p" (x = eine beliebige ganze Zahl von 0 bis 9). z. B. "002 MyProject.u_p"

Es können maximal 255 Projekte für alle Applikationen zusammen geladen werden. Die Projektnummern können zwischen 1 und 255 eingestellt werden. Verwenden Sie für jede uniVision-Projektdatei eine eindeutige Nummer.

HINWEIS!

Befehle an uniVision-Geräte dürfen nur geschickt werden, wenn das Command Ready Signal aktiv ist. Vor dem Senden von Befehlen muss somit der Zustand des Command Ready Signals geprüft werden.

Der Befehlsparameter 0 muss entsprechend der Nummer im Namen der Projektdatei definiert werden.

- Wenn die uniVision-Applikation den Befehl "Load project" empfängt, ändert sich das "Command Acknowledge"-Signal von FALSE zu TRUE und das "Command Ready"-Signal von TRUE zu FALSE.
- Sobald das Projekt erfolgreich geladen wurde, ändert sich das "Command Ready"-Signal von FALSE zu TRUE.
- Nach dem Löschen des Befehlssignals "Load project" ändert sich auch das "Command Acknowledge"-Signal von TRUE zu FALSE.

HINWEIS!

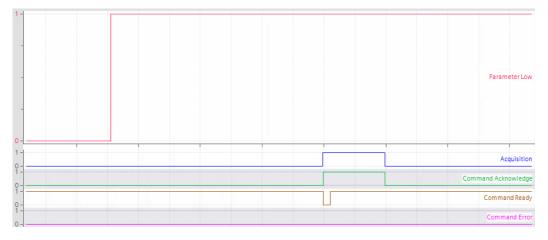
- Das Projekt ist vollständig geladen, wenn das "Command Ready"-Signal wieder auf TRUE gewechselt ist und kein Befehlsfehler aufgetreten ist. Danach kann direkt wieder der nächste Befehl (z.B. Triggerbefehl) an die uniVision-Applikation gesendet werden.
- Für weitere Details kann die Projektnummer auch als Prozessdaten von der Control
 Unit an die SPS gesendet werden. Prozessdaten werden aufgrund des Triggersignals
 bei jeder Datenauswertung aktualisiert (weitere Informationen finden Sie im Kapitel "3.4
 Benutzerdefinierte Prozessdaten" auf Seite 15).

3.3.4 Befehl "Acquisition Start/Stop"

Wenn ein Befehl "Acquisition Start/Stop" gesendet wird, ist die uniVision-Applikation bereit bzw. nicht länger bereit, Triggersignale zu empfangen. Abhängig vom Befehlsparameter kann die Erfassung gestartet oder gestoppt werden. Die Triggersignale können hierfür intern vom Gerät selbst erzeugt werden oder über eine externe Schnittstelle (z.B. digitale Eingänge oder Profinet) generiert werden:

- Befehlsparameter 0: Wert 0 Stoppt die Erfassung
- Befehlsparameter 0: Wert 1 Startet die Erfassung

HINWEIS!



Nur bei einer aktiven Erfassung ist das Gerät bereit, Triggersignale zu empfangen. Nach dem Systemstart oder nach dem Laden eines Projekts wird die Erfassung automatisch gestartet. Die Triggersignale können hierfür intern vom Gerät selbst erzeugt werden oder über eine externe Schnittstelle (z.B. digitale Eingänge oder Profinet) generiert werden.

HINWEIS!

Befehle an uniVision-Geräte dürfen nur geschickt werden, wenn das Command Ready Signal aktiv ist. Vor dem Senden von Befehlen muss somit der Zustand des Command Ready Signals geprüft werden.

15

 Der Wert des Befehlsparameters 0 muss auf 0 oder 1 gesetzt werden – je nachdem, ob die Erfassung gestartet oder gestoppt werden soll.

- Wenn die uniVision-Applikation den Befehl "Acquisition Start/Stop" empfängt, ändert sich das "Command Acknowledge"-Signal von FALSE zu TRUE und das "Command Ready Signal" von TRUE zu FALSE.
- Sobald die Erfassung erfolgreich gestartet oder gestoppt wurde, ändert sich das "Command Ready"-Signal von FALSE zu TRUE.
- Nachdem das Befehlssignal für "Acquisition Start/Stop" entfernt wurde, ändert sich auch das "Command Acknowledge"-Signal von TRUE zu FALSE.

3.4 Benutzerdefinierte Prozessdaten

Benutzerdefinierte Prozessdaten werden im uniVision-Projekt konfiguriert. Prozessdaten können vom Gerät an die SPS und von der SPS an das Gerät gesendet werden. Genauere Informationen finden Sie in den Einstellungen der Control Unit (siehe Kapitel, 4.3 Gerät Industrial Ethernet" auf Seite 19).

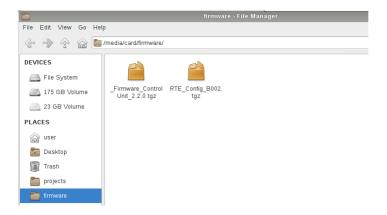
HINWEIS!

Im Vergleich zu Befehlen und Statusdaten, die ständig aktualisiert werden, werden Prozessdaten nur dann ausgewertet und gesendet, wenn Daten (z. B. Bild oder Profil) aufgrund eines Triggersignals ausgeführt werden.

4. Einstellungen der Control Unit

4.1 Installation der Konfigurationsdateien

Die Control Unit unterstützt mehrere feste Konfigurationslayouts für die Profinet-Kommunikation. Eine ausführliche Liste der verfügbaren Konfigurationsdateien finden Sie im Anhang (siehe Kapitel "7. Anhänge" auf Seite 33). Die Standardkonfiguration der Control Unit funktioniert für zwei uniVision-Applikationen.


HINWEIS!

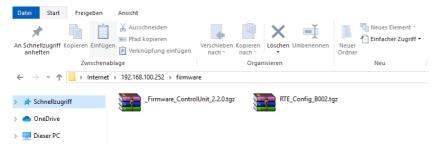
Die Profinet-Kommunikation wird für die Control Units BB1C1xx ab der Firmware-Version 2.2.0 unterstützt. Die Control Units BB1C5xx werden ab der Firmware 2.6.1 unterstützt. Nach einem Firmware-Update der Control Unit wird die Konfigurationsdatei automatisch auf die Standardkonfiguration zurückgesetzt. Somit ist nach einer Firmware-Installation auf der Control Unit das erneute Installieren der entsprechenden Konfigurationsdatei notwendig.

Verfahren zur Änderung der Konfiguration der Control Unit:

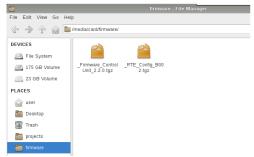
- 1. Geeignete Konfigurationsdatei auswählen (siehe Kapitel "7. Anhänge" auf Seite 33)
- 2. Konfigurationsdatei von der wenglor-Website herunterladen
- 3. tgz-Konfigurationsdatei in den Firmware-Ordner der Control Unit kopieren
 - a. über USB-Stick und durch Kopieren der Datei auf der Control Unit nach /media/card/firmware

b. per FTP-Transfer in den Firmware-Ordner der Control Unit.

HINWEIS!



Für die FTP-Übertragung wird eine Netzwerkverbindung vom Windows-PC zur Control Unit benötigt. Öffnen Sie dann den Dateimanager und geben Sie folgendes ein: ftp:// + IP-Adresse der Control Unit.


Beispiel mit der Standard-IP-Adresse der Control Unit: ftp://192.168.100.252 Zugangsdaten:

- · Benutzername: ftpuser
- · Passwort: ftpvision

 Führen Sie einen Neustart der Control Unit durch, um die Konfigurationsdatei zu installieren (über Menü -> Neustart).

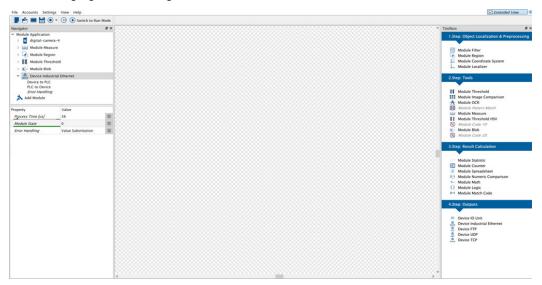
Die Control Unit wird neu gestartet und installiert die Konfigurationsdatei. Nach erfolgreicher Installation wird am Anfang des Dateinamens der Konfigurationsdatei ein Unterstrich hinzugefügt.

Die Datei RTE_Config.log beinhaltet die Information, welches Protokoll und welche Konfigurationsdatei aktuell installiert sind.

4.2 Konfiguration der uniVision-Applikationen und -Projekte

Um eine Kommunikation zwischen der uniVision-Applikation und der SPS zu ermöglichen, sind folgende Schritte erforderlich:

- Netzwerkkonfiguration der Control Unit für LAN1 und LAN2 einrichten
- Aufnahmegeräte (z. B. Digitalkameras) zur Control Unit hinzufügen
- · uniVision-Applikationen erstellen
- uniVision-Projekte erstellen und speichern
- Startverhalten für uniVision-Applikationen konfigurieren


HINWEIS!

Ausführliche Informationen über alle aufgeführten Schritte finden Sie im Softwarehandbuch zu uniVision.

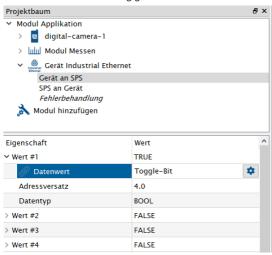
4.3 Gerät Industrial Ethernet

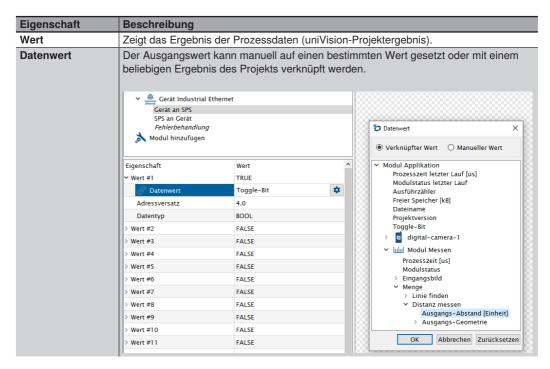
Fügen Sie "Gerät Industrial Ethernet" aus der Toolbox zum Projektnavigator hinzu, um die benutzerdefinierten Ein- und Ausgangsdaten zu konfigurieren.

HINWEIS!

Im Vergleich zu Befehlen und Statusdaten, die ständig aktualisiert werden, werden Prozessdaten nur dann ausgewertet und gesendet, wenn Daten (z. B. Bild oder Profil) aufgrund eines Triggersignals ausgeführt werden.

Das Hinzufügen des Device Industrial Ethernet ist nur möglich, wenn eine Verbindung zu einer uniVision-Applikation und einem realen Aufnahmegerät besteht. In Offline-Projekten ist das Hinzufügen des Device Industrial Ethernet zum Projekt nicht möglich.


Eigenschaften


Eigenschaft	Beschreibung
Prozesszeit [us]	Dauer in μ s für die Verarbeitung des Moduls
Modulstatus	Zeigt den Status des Moduls an: • 0: Kein Fehler
	Wert ungleich 0: Fehler (Details zum Fehlercode finden Sie im Softwarehandbuch zu uniVision)
Fehlerbehandlung	Wenn sich Prozessdaten im Fehlerzustand befinden, werden sie durch einen benutzer- definierten Ersatzwert ersetzt.

Software VisionApp 360

4.3.1 Gerät an SPS

Es erscheint eine Liste aller verfügbaren Prozessdaten (uniVision-Projektergebnisse), die von der Konfiguration der Control Unit abhängig ist.

Datenwert

HINWEIS!

- Benutzen Sie BOOL, um True/False-Ergebnisse zu senden oder zu empfangen (z. B. Toggle-Bit).
- Benutzen Sie REAL, um Zahlen mit Nachkommastellen zu senden oder zu empfangen (z. B. x-Wert eines ermittelten Punktes).
- Benutzen Sie DINT, um Zahlen ohne Nachkommastellen zu senden oder zu empfangen (z. B. Pixel-Zählwert des Modul-Thresholds).
- Benutzen Sie CHAR, um Textinformationen zu senden oder zu empfangen (z. B. ein Codeergebnis).

Die Verknüpfung der Ergebnisse mit den verschiedenen Datentypen funktioniert folgendermaßen:

- BOOL (Ausgang)
 - BOOL-Ergebnis verknüpfen: Gibt je nach Wert von bool true oder false aus
 - DINT- oder REAL-Ergebnis verknüpfen: Gibt true aus, wenn der aktuelle Wert innerhalb der Schwellwerte liegt (zwischen minimalem und maximalem Schwellwert) und false, wenn der aktuelle Wert außerhalb der Toleranz liegt (niedriger als der minimale oder höher als der maximale Schwellwert)
 - CHAR verknüpfen: Gibt true aus, wenn der Text nicht leer ist, und false, wenn der Text leer ist.
- DINT (Ausgang)
 - BOOL-Ergebnis verknüpfen: Gibt 0 für den Bool-Wert false und 1 für den Bool-Wert true aus.
 - DINT verknüpfen: Gibt den aktuellen DINT-Wert aus
 - REAL verknüpfen: Gibt Zahl ohne Nachkommastellen aus (keine Rundung!)
 - CHAR verknüpfen: Gibt die Zeichenzahl des Textes aus
- REAL (Ausgang)
 - BOOL-Ergebnis verknüpfen: Gibt 0 für den Bool-Wert false und 1 für den Bool-Wert true aus.
 - DINT oder REAL verknüpfen: Gibt Zahl mit Nachkommastellen aus
 - CHAR verknüpfen: Gibt die Zeichenzahl des Textes aus
- CHAR (Ausgang)
 - BOOL-Ergebnis verknüpfen: Gibt false aus, wenn der Bool-Wert false ist, bzw. true, wenn der Bool-Wert true ist
 - DINT oder REAL verknüpfen: Gibt die Zahl aus
 - CHAR verknüpfen: Gibt den Text aus

Adressversatz	Zeigt den Adress-Offset für den Wert an					
	HINWEIS! Um die Adress-Offsets zu verwenden, ist es notwendig, aufeinander folgende Ein- und Ausgangsdaten für die Control Unit zu benutzen. Der Adress-Offset muss zur ersten Ein- oder Ausgangsadresse, die für die Control Unit verwendet wird, hinzugefügt werden.					
Datentyp	Zeigt den Datentyp des Wert an					

4.3.2 SPS an Gerät

Es erscheint eine Liste aller verfügbaren Prozessdaten (uniVision-Projekteingaben), die von der Konfiguration der Control Unit abhängig ist.

Eigenschaft	Beschreibung					
Wert	Zeigt das Ergebnis des Werts (uniVision-Eingabewert)					
Datenwert	Zeigt das Ergebnis des Werts (uniVision-Eingabewert)					
	HINWEIS! Prozessdaten von der SPS an die uniVision-Applikation werden empfangen, wenn in der uniVision-Applikation aufgrund eines Triggersignals ein Bild oder ein Profil ausgewertet wird.					
Adressversatz	Zeigt den Adress-Offset für den Wert an					
	HINWEIS! Um die Adress-Offsets zu verwenden, ist es notwendig, aufeinander folgende Ein- und Ausgangsdaten für die Control Unit zu benutzen. Der Adress-Offset muss zur ersten Ein- oder Ausgangsadresse, die für die Control Unit verwendet wird, hinzugefügt werden.					
Datentyp	Zeigt den Datentyp des Wert an					

4.3.3 Fehlerbehandlung

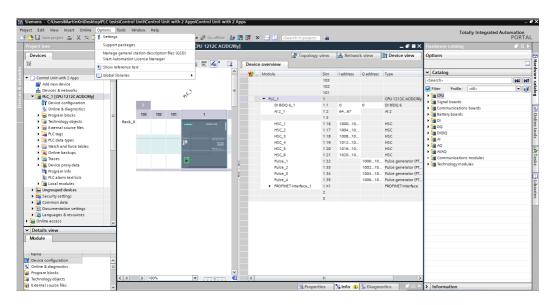
Wenn sich Prozessdaten im Fehlerzustand befinden, kann der Ersatzwert für jeden Datentyp ausgewählt werden.

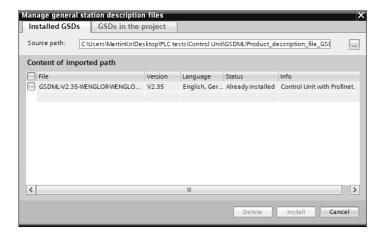
Eigenschaft	Beschreibung
Ersetze BOOL-	Wenn sich ein Bool-Typ, der im Gerät Industrial Ethernet verwendet wird, im Fehl-
Typen durch	erzustand befindet, wird er durch niederwertig oder höherwertig ersetzt (Standard:
	niederwertig).
Ersetze INT-Typen	Wenn sich ein INT-Typ, der im Gerät Industrial Ethernet verwendet wird, im Fehlerzu-
durch	stand befindet, wird er durch einen benutzerdefinierten INT-Wert ersetzt (Standard: 0).
Ersetze	Wenn sich ein DOUBLE-Typ, der im Gerät Industrial Ethernet verwendet wird, im
DOUBLE-Typen	Fehlerzustand befindet, wird er durch einen benutzerdefinierten DOUBLE-Wert ersetzt
durch	(Standard: 0.0000.)
Ersetze STRING-	Wenn sich ein STRING-Typ, der im Gerät Industrial Ethernet verwendet wird, im Feh-
Typen durch	lerzustand befindet, wird er durch einen beliebigen benutzerdefinierten STRING-Wert
	ersetzt (Standard: Error).

5. SPS-Einstellungen

Auf SPS-Seite müssen folgende Einstellungen vorgenommen werden.

5.1 GSDML-Datei

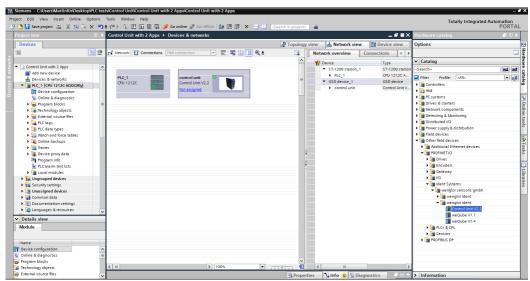

Die GSDML-Datei steht auf der wenglor-Website im Download-Bereich der Control Unit zur Verfügung. Laden Sie die GSDML-Datei herunter, entpacken Sie die Datei und installieren Sie diese auf der SPS.


HINWEIS!

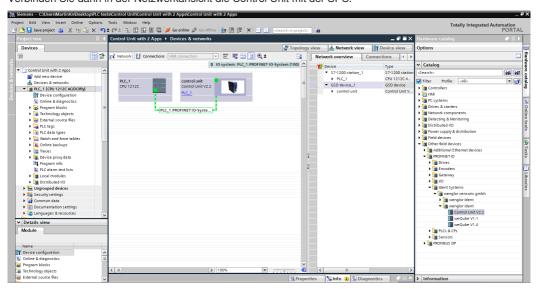
Entpacken Sie die Datei bitte nach dem Download, bevor Sie diese auf der SPS installieren.

In der Software TIA Portal V15 wird die GSDML-Datei über "Extras" → "Gerätebeschreibungsdateien (GSD) verwalten" hinzugefügt.

Passen Sie gegebenenfalls den korrekten Quellpfad an, wählen Sie die Datei aus und klicken Sie auf "Installieren". Nach erfolgreicher Installation zeigt der Status "bereits installiert" an.

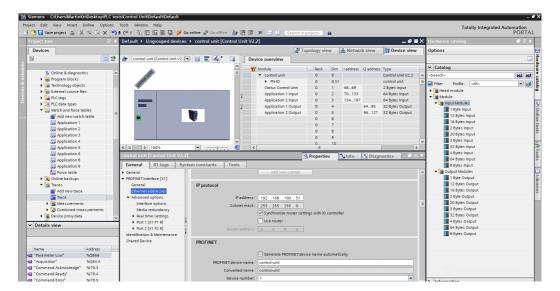


24 SPS-Einstellungen



5.2 Control Unit zum SPS-Netzwerk hinzufügen

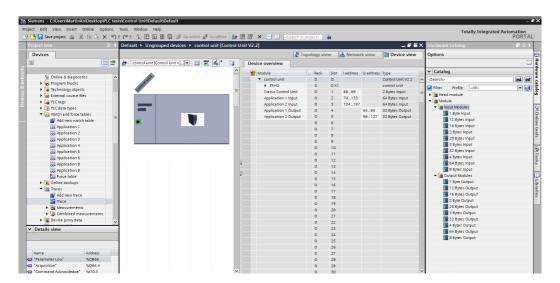
Suchen Sie im Hardware-Katalog nach "Weitere Feldgeräte" → "PROFINET IO" → "Ident Systems". Wählen Sie "wenglor sensoric gmbh", "wenglor ident" aus und fügen Sie "Control Unit V2.2" zu Ihrem Netzwerk hinzu.



Verbinden Sie dann in der Netzwerkansicht die Control Unit mit der SPS.

5.3 Konfiguration des Profinet-Netzwerks

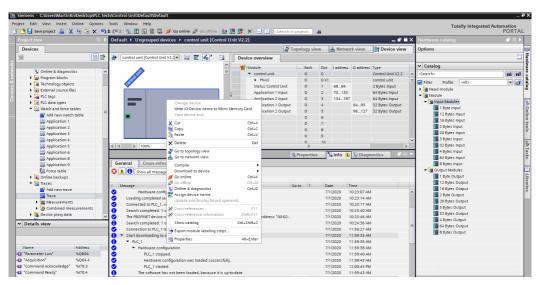
Wechseln Sie in die Geräteansicht der Control Unit und öffnen Sie die Eigenschaften. Richten Sie dann die Netzwerkkonfiguration für die Profinet-Schnittstelle der Control Unit ein und wählen Sie einen Gerätenamen aus.

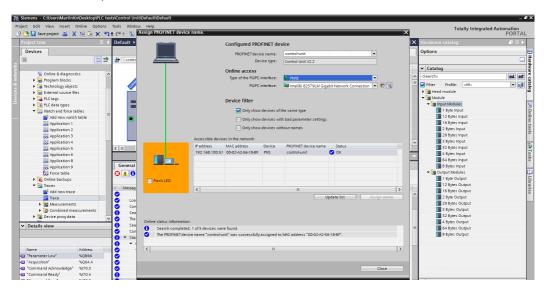

26 SPS-Einstellungen

5.4 Konfiguration der Eingangs- und Ausgangsdaten

Fügen Sie die Ein- und Ausgangssteckplätze gemäß der Konfigurationsdatei hinzu, die für die Control Unit verwendet wird.

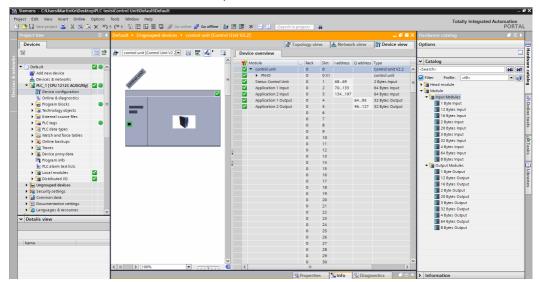
Beispiel: Das folgende Beispiel zeigt die Standardkonfiguration der Control Unit. Es ist möglich, Ein- und Ausgangsdaten mit bis zu zwei uniVision-Applikationen zu übertragen.


HINWEIS!


- Ein- und Ausgangssteckplätze der Control Unit müssen nacheinander (lückenlos und in der richtigen Reihenfolge!) hinzugefügt werden, um die im Projektbaum vorgesehenen Adress-Offsets nutzen zu können.
- Nach Änderung der Konfiguration der Ein- und Ausgangsdaten in der SPS kann es erforderlich sein, die Netzwerkeinstellungen und den Gerätenamen von der SPS an die Control Unit neu zuzuweisen (siehe Kapitel "5.5 Konfiguration auf SPS herunterladen" auf Seite 28).

5.5 Konfiguration auf SPS herunterladen

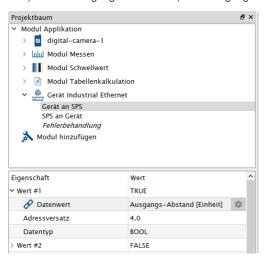
Kompilieren Sie die Konfiguration und laden Sie diese auf die SPS herunter. Weisen Sie dann der Control Unit über das Kontextmenü die Netzwerkkonfiguration und den Gerätenamen zu.


Klicken Sie auf "Liste aktualisieren", um alle Control Units im Netzwerk anzuzeigen. Wählen Sie die verfügbare Control Unit aus, weisen Sie den Namen zu und schließen Sie das Fenster.

28 SPS-Einstellungen

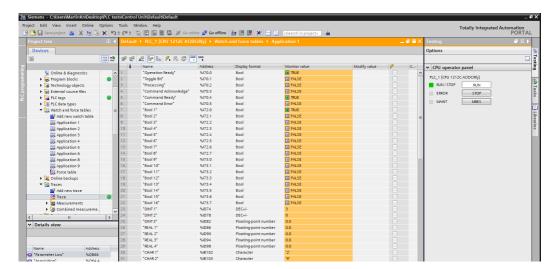
Klicken Sie auf "Online gehen". Überprüfen Sie den Status in TIA Portal, um zu analysieren, ob die Konfiguration der SPS und der Control Unit zusammenpassen.

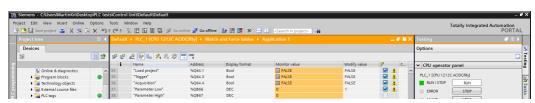
5.6 PLC-Variablen


Wählen Sie SPS-Tags aus, um die Eingangs- und Ausgangsdaten zu Ihrem SPS-Projekt hinzuzufügen. Verwenden Sie für die Prozessdaten die Adress-Offsets und die Datentypen, die innerhalb des uniVision-Projekts bereitgestellt werden.

HINWEIS!

Datentypen und Adress-Offsets sind für alle benutzerdefinierten Prozessdaten verfügbar. Der Adress-Offset muss zur Anfangsadresse der ersten Eingangs- oder der ersten Ausgangsadresse der Control Unit hinzugefügt werden.


Beispiel: Im Beispiel müssen die Adress-Offsets zur Eingangsadresse 68 (erste Eingangsadresse der Control Unit) und zur Ausgangsadresse 64 (erste Ausgangsadresse von Applikation 1) hinzugefügt werden.



30 SPS-Einstellungen

Das Beispiel zeigt einige SPS-Tags für Applikation 1 (in ihrer Standardkonfiguration).

6. Beispiel SPS-Programme

Für die in der Anleitung gezeigte Standardkonfiguration der Control Unit (RTE_Config_B002) kann das Beispiel-SPS-Projekt im Downloadbereich der Control Unit auf www.wenglor.com verwendet werden. Es wurde mit einer SPS S7-1200 von Siemens mit TIA Portal V15 erstellt und zeigt beispielhaft die Erstellung der PLC-Variablen für zwei uniVision-Applikationen.

Im Downloadbereich der Control Unit auf www.wenglor.com befinden sich Beispiel-SPS-Projekte für verschiedene Steuerungen. Die Projekte zeigen beispielhaft, welche Einstellungen auf Steuerungsseite zur PROFI-NET-Kommunikation mit der Control Unit notwendig sind.

Beispiele existieren für folgende Steuerungen:

- SPS S7-1200 von Siemens mit TIA Portal V15
- TwinCAT 3 von Beckhoff

Vorgehen zur Verwendung der Beispiel-SPS-Programme:

- 1. Beispieldatei von der wenglor-Webseite herunterladen und entpacken.
- 2. Die zugehörige Konfigurationsdatei RTE_Config_B002.tgz auf der Control Unit installieren.
- Das SPS-Beispielprogramm öffnen, die Netzwerkkonfiguration anpassen und das Programm auf die SPS übertragen bzw. aktivieren.

7. Anhänge

Übersicht der Konfigurationsdateien für die Control Unit

HINWEIS!

Standardmäßig wird RTE_Config_B002 (siehe RTE_Config_B002) installiert, um Daten mit zwei uniVision-Applikationen zu übertragen. Wird eine andere Konfiguration benötigt, so muss diese auf der Control Unit installiert werden (siehe Kapitel "4.1 Installation der Konfigurationsdateien" auf Seite 16). Nach einem Firmware-Update der Control Unit wird die Konfigurationsdatei automatisch auf die Standardkonfiguration zurückgesetzt. Somit ist nach einer Firmware-Installation auf der Control Unit das erneute Installieren der entsprechenden Konfigurationsdatei notwendig.

7.1 RTE Config B0xx (001 - 012)

Konfigurationsdatei für 1 – 12 uniVision-Applikationen (xx = Anzahl der uniVision Applikationen)

Konfiguration der Steckplätze:

- · 2 Byte Eingang (Status der Control Unit)
- · 64 Byte Eingang (für jede Applikation)
 - 2 Byte: Status Applikation
 - 2 Byte: 16 BOOL
 - 12 Byte: 3 DINT
 - 16 Byte: 4 REAL
 - 32 Byte: 1 CHAR mit 32 Byte
- 32 Byte Ausgang (für jede Applikation)
 - 4 Byte: Befehle
 - 4 Byte: 32 BOOL
 - 8 Byte: 2 DINT
 - 16 Byte: 4 REAL

7.2 RTE_Config_B1xx (101 - 112)

Konfigurationsdatei für 1 – 12 uniVision-Applikationen (xx = Anzahl der uniVision Applikationen)

Konfiguration der Steckplätze:

- · 2 Byte Eingang (Status der Control Unit)
- · 64 Byte Eingang (für jede Applikation)
 - 2 Byte: Status Applikation
 - 2 Byte: 16 BOOL
 - 28 Byte: 7 DINT
 - 32 Byte: 8 REAL
- · 32 Byte Ausgang (für jede Applikation)
 - 4 Byte: Befehle
 - 4 Byte: 32 BOOL
 - 8 Byte: 2 DINT
 - 16 Byte: 4 REAL

7.3 RTE_Config_B2xx (201 - 210)

Konfigurationsdatei für 1 – 10 uniVision-Applikationen (xx = Anzahl der uniVision Applikationen)

Konfiguration der Steckplätze:

- · 2 Byte Eingang (Status der Control Unit)
- 64 + 64 Byte Eingang (für jede Applikation)
 - 2 Byte: Status Applikation
 - 2 Byte: 16 BOOL
 - 12 Byte: 3 DINT
 - 16 Byte: 4 REAL
 - 32 + 64 Byte: 3 CHAR mit 32 Byte
- · 64 Byte Ausgang (für jede Applikation)
 - 4 Byte: Befehle
 - 4 Byte: 32 BOOL
 - 8 Byte: 2 DINT
 - 16 Byte: 4 REAL
 - 32 Byte: 1 CHAR mit 32 Byte

34 Anhänge

